STATE OF THE ART AND PERSPECTIVES

Alexandre Quemy
February 16, 2017
Legal Analysis
 Law & Economics
 Computational Law
Abstract Argumentation
Sequential Decision Processes
Perspectives
Definition

Studying law and its consequences with economic tools.

Law & Economics

- First apparition with Hume and Smith [Smi59, Hum39]
- Rise and seminal works in 1960’ with Posner
- Two schools: Economic Analysis of Law vs Institutionalism
Economic Analysis of Law

- Normative: Law MUST be an incitation mechanism for economic purposes. [PP11]
- Some decisions were optimal w.r.t. economic principles [Coa60]
- “the principal function of accident law is to reduce the sum of the cost of accident and the cost of avoiding accidents” [CAL70]
Institutionalism

- Incitative: Law is an incitation and a way to solve conflicts [ST03]
- Behavior school of economy [Sti87, JST98, Sim66, KT79, TK74]
- Two ways studies: legal aspect into economic [DL09]
What does the legal experts think about it?

- Large adoption in US (due to Common Law)
- Europe is reluctant about the Economic Analysis of Law [DM06, Cap06]
- Some legal experts admit studies should be done but lack of qualification and time [Can05]
- Law = Finance 1970 => should evolve toward risk management using finance-like tools [KBJ14]
<table>
<thead>
<tr>
<th>Hermeneutic revolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is judging a rational and objective action?</td>
</tr>
<tr>
<td>• Hot topic among jurists since mid 20th century: “Legalism vs Attitudism (realism)”</td>
</tr>
<tr>
<td>• The trend is definitely a big “No”:</td>
</tr>
<tr>
<td>• Selection among the best alternatives [Fry05]</td>
</tr>
<tr>
<td>• Iterative process because the law is too general [Tro01]</td>
</tr>
<tr>
<td>• There exists disruption in the law due e.g. to new technologies [Sun98]</td>
</tr>
<tr>
<td>• Impact of judges preferences</td>
</tr>
<tr>
<td>• Cognitive bias</td>
</tr>
</tbody>
</table>

Note that the Economic Analysis of Law is legalist.
Figure 1: Taxonomy of Computational Law
Ideal Court Assumption

The judges are perfectly rational, omniscient, free of bias.

- the decisions are not correlated
- impossible to use past case information
- expert rules-base systems is the only solution

Predictive Models

Detecting patterns into decision sequences. Blind to legal doctrine. Unable to make justification.

Large focus on SCOTUS...
Reference: 75.4% prediction by legal experts [TWRQ04].

- The Block Model [GSP11]: social network and affiliation network techniques. 77% prediction, not fully predictive, no explanation. Shown a decrease in predictibility in time.
- The Decision Tree Model [ADMR04, TWRQ04]: 6 case features, better predictibility than experts. The experts: better on the vote of the most extremely ideologically oriented judges.
Reference: 75.4% prediction by legal experts [TWRQ04].

- The Extra-Tree Model [KBJ14]: 67% predictibility but... over 60 years, global and stable model.
 - Court information, Case information, Non-legal factors
 - Weights: a step for an explanation.
 - Predictive power: 23% case, 5% court, +70% non-legal factors → argument for realism

- NLP [ATPPL16]: 79% predictibility on ECtUR
 - Hypothesis: the case holds textual information to influence the judgement.
 - Bag-of-Word + topic model using LDA
 - Binary classificator (SVM) trained on labelled cases.

Arguments for realism: a lot of non-legal factors but... “Selection effect” [Kle12]
Indicators to capture ideology.

<table>
<thead>
<tr>
<th>Ideal Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>One or two dimensional point to summarize the ideology [LC14]. Often “Conservative vs Liberal”.</td>
</tr>
</tbody>
</table>

Focus on the “Swing Justice”: Median Voter Theorem.
Segal-Cover [SC89, SECS95]

Predictibility

Linear regression $\hat{Y} = aX + b$ on several domain.

- Civil Liberties: $r = 0.69$
- Economic: $r = 0.59$

Variation in predictibility depending on Court composition.
Martin-Quinn Score [QM02, QPM06]

Spatial Voting Model + Resolution by MCMC.
Hypothesis: The ideal point evolves in time.

\[
Z_{t,k,j} = -|\theta_{t,j} - x^r_k|^2 + \varepsilon^r_{t,k,j} + |\theta_{t,j} - x^a_k|^2 - \varepsilon^a_{t,k,j}
\]

with

- \(\theta_{t,j}\) the ideal point of the judge \(j\) at time \(t\).
- \(x^r_k, x^a_k\) the location of the revert and support policy.
- \(\varepsilon^r_{t,k,j}, \varepsilon^a_{t,k,j}\) a gaussian noise, centered and with a fixed variance.
Isomorphic to an Item Response Model:

\[Z_{t,k,j} = \alpha_k + \beta_k \theta_{t,j} + \varepsilon_{t,k,j} \]

Posteriori Estimation:

\[p(\alpha, \beta, \theta | V) \propto p(V | \alpha, \beta, \theta)p(\alpha, \beta, \theta) \]

- Gaussian for the priors (standard approach)
- Ideal point however as a random walk:

\[\theta_{t,j} \sim \mathcal{N}(\theta_{t-1}, \Delta_{\theta_{t,j}}), \forall t \in \{T_j, ..., Tbar_j\} \]

Metropolis-Hasting to sample \(Z \)
Results:

- Confirm previous approach.
- 0.8 correlation in average.
- Shows the evolution in time of the preferences.

Still the most widely used measure of ideology.
Extension to the Amicus Effect [SRS14]

Mix between Martin-Quinn method and NLP approach. Measure the effect of Amicus using Random Utility Model.

\[
p(v_i,j|\theta_i, \phi_i, \Delta_i, \alpha_i, \beta_i, \gamma_i) = \sigma(\alpha_i + \theta_i^T(\beta_i \phi_i + \gamma_i^a \Delta_i^a + \gamma_i^r \Delta_i^r))
\]

with

- \(\phi_i\) the legal arguments in merits briefs
- \(\theta_i\) justice ideal point
- \(\Delta_i^a, \Delta_i^r\) the mean issue proportions of the amicus briefs supporting or not the revertal
- \(\sigma(x) = \frac{e^x}{1+e^x}\), the logistic function
Amici = one agent with utility function

\[u((v_{k,j})_{j \in I_k}) = \sum_{j \in I} 1_{(v_{k,j}=s)}(j) \]

\[
\max \frac{\mathbb{E}_{\Delta} [u((v_{k,j})_{j \in I_k})]}{2} - \frac{\epsilon}{2} \| \Delta - \theta \|^2
\]

\[
= \max \sum_{j \in I} \sigma(\alpha + \theta_j^T (\beta \phi + \gamma^s \Delta)) - \frac{\epsilon}{2} \| \Delta - \theta \|^2
\]

Prior on \(\Delta \): \(p_{\text{util}}(\Delta) \propto \mathbb{E}_{\Delta} [u((v_{k,j})_{j \in I_k})] + \epsilon(1 - \frac{1}{2} \| \Delta - \theta \|_2^2) \)

(Random Utility Model [?])

Final quantity to estimate the parameters:

\[
\mathcal{L}(w, v, \theta_i, \phi_i, \Delta_i, \alpha_i, \beta_i, \gamma_i)[\prod_{k \in \mathcal{A}} p_{\text{util}}(\Delta_k)]^\eta
\]
Hard to recognize the side of amicus brief.

- Manual labeling + binary classifier to automate.
- Gaussian prior.
- For ϕ_i and Δ_k: LDA over joint amicus briefs.

To infer:

1. Infer ϕ_i and Δ using LDA.
2. Fixe ϕ and Δ to their posterior mean and then solve for θ and other param. using an hybrid MCMC algorithm.
Decomposition of a decision per judge and factors (ideal point, amici for both sides, and combined). In this specific case, the briefs shift the ideal point toward Maple side and for three Justices, enough to change the initial side. The scale represent a log-odd of vote.
Counterfactual analysis answering the question “What would have been the probabilities of vote if one or both amicus were not filled?”. The scale represent a log-odd of vote.
Extension to the Amicus Effect

An extension was proposed by [IHKR16]. Consider that the court opinions can be expressed in the same space as the Justices. Use NLP to model Ideal Point as topic mixture over the opinion judges wrote.
Figure 2: Illustration of the cycle carried out by a Case-based system to solve a problem as illustrated by [AP94]
Case-Based Reasoning

Case representation:

- too abstract \implies poor analogy
- too concrete \implies anecdotal evidence

Assumption: Legal Practitioners reason by analogy

- Still discuss among experts... [Wei05, Pos05, Kay05, Bec73]
- ... but confirmed by some studies

More efficient and reliable than Rule-base in legal domain [Kow91]
<table>
<thead>
<tr>
<th>CATO [AA97, Ash88, Ash02]</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ancestor of Abstract Argumentation.</td>
</tr>
<tr>
<td>• Purpose: to teach students argumentation.</td>
</tr>
<tr>
<td>• Limite to Trade Secret Law.</td>
</tr>
<tr>
<td>• Database of textual summary and factors.</td>
</tr>
<tr>
<td>• Static factor hierarchy.</td>
</tr>
<tr>
<td>CATO : Basic reasoning moves</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>• Analogizing a problem to a past case with favorable outcome</td>
</tr>
<tr>
<td>• Analogizing a problem to a past with with an unfavorable outcome</td>
</tr>
<tr>
<td>• Downplaying the significance of a distinction</td>
</tr>
<tr>
<td>• Emphasizing the significance of a distinction</td>
</tr>
<tr>
<td>• Citing a favorable case to highlight strengths</td>
</tr>
<tr>
<td>• Citing a favorable case to argue that weaknesses are not fatal</td>
</tr>
<tr>
<td>• Citing a more on point counterexample to a case city by an opponent</td>
</tr>
<tr>
<td>• Citing an as on point counterexample.</td>
</tr>
</tbody>
</table>
CATO: process of justification

1. Process to justify a favorable decision on an issue
2. Point to strengths related to an issue and why it matters
3. Show favorable cases
4. Discuss weaknesses and compensating factors
5. Show cases with favorable outcome but with the same weaknesses
What conclusions to draw?

- Attitudinalism validated by many studies
- There is a room of improvement to correct bias
- Too many restrictions in Expert Systems
- Need for NLP and flexible approach
Legal Analysis

Abstract Argumentation
 Dung’s Abstract Argumentation
 Extensions & Generalizations
 Weighted Argumentation Framework
 Applications to Legal Domain

Sequential Decision Processes

Perspectives
According to [CLS05]:

1. Building the arguments, i.e. defining the arguments and the relation(s) between them
2. Valuating the arguments using their relations, a strength, etc.
3. Selecting some arguments using a criterion (a *semantic*) depending on the problem we want to solve or the situation to model.
Definition (Abstract Argumentation Framework [Dun95])

An AAF is a pair $F = (A, R)$ where:

1. A is a non-empty set of arguments.
2. $R \subseteq A \times A$, i.e. a binary relation on A.

Let $(a, b) \in A^2$, $a R b$ indicates that a attacks b.

Figure 3: A graph representation of an AAF.
Definition (Attack to and from a set)

Given an AAF \((A, R)\), \(a \in A\), \(S \subseteq A\), then:

1. \(S\) attacks \(a\) iff \(\exists b \in S\) such that \(b R a\).
2. \(a\) attacks \(S\) iff \(\exists b \in S\) such that \(a R b\).

semantic: how to solve the conflicts between arguments.
Definition (Conflict-free Set)

Given an AAF $F = (A, R)$ and a set $S \subseteq A$, S is conflict-free in F if $\forall (a, b) \in S^2$, $(a, b) \not\in R$.

Definition (Admissible Set)

Given an AAF $F = (A, R)$ and a set $S \subseteq A$, S is admissible in F if S is conflict-free and each a in S is defended by S in F.

Definition (Extension)

An extension is defined as an admissible set in F.
Notation

We denote by $E = \{\varepsilon_i\}_i$ the set of all possible extensions on an AAF F.

Notation

For a given AAF F, we define the characteristic function of F as the total operator $\gamma_F : 2^A \rightarrow 2^A$, defined as $\gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$.
Semantic of Acceptability

Definition (Complete Extension)

\[\mathbf{E} \text{ is complete iff } \forall a \in \gamma_F(\mathbf{E}), \ a \in \mathbf{E}. \]

Definition (Preferred Extension)

\[\mathbf{E} \text{ is preferred iff } \mathbf{E} \text{ is maximal in } A \text{ (w.r.t. the set inclusion } \subseteq), \text{ i.e. } \forall \mathbf{E}' \subseteq \mathbf{E}, \ \mathbf{E} \neq \mathbf{E}', \ \mathbf{E} \not\subseteq \mathbf{E}'. \]

Definition (Grounded Extension)

\[\mathbf{E} \text{ is the unique grounded extension iff } \mathbf{E} \text{ is the least fix-point for } \gamma_F \text{ (w.r.t. the set inclusion } \subseteq). \]

Definition (Stable Extension)

\[\mathbf{E} \text{ is stable iff } \forall a \in A \setminus \mathbf{E}, \ \exists b \in S, \ (b, a) \in R. \]
Definition (Well-Founded Argumentation Framework)

An AAF F is well-founded iff there is no infinite sequence of arguments i.e. $a = (a_i)_{i \in \mathbb{N}}$, $(a_i, a_{i+1}) \in R$.

If A is finite, a well-founded AAF is represented by an acyclic graph.

Properties

If F is a Well-Founded Argumentation Framework, it has exactly one extension that is grounded, stable, preferred and complete at the same time.
Definition (Acceptability of an argument)

Let F be an AAF and $x \in A$ an argument. With regard to a semantic σ defining a set of extension E_σ:

- **Skeptical**: x is skeptically accepted iff $\forall \varepsilon \in E_\sigma, x \in \varepsilon$, i.e. the argument belongs to all the extensions of the semantic.

- **Credulous**: x is credulous accepted iff $\exists \varepsilon \in E_\sigma, x \in \varepsilon$, i.e. the argument is at least in one extensions.
Very large and active litterature...

Attack Frameworks

- Dung’s Frameworks (AF) [Dun95]: $F = (A, R)$ with $R \subseteq A \times A$.
- Framework with Sets of Attacking Arguments (SETAF) [NP07]: $F = (A, R)$ with $R \subseteq (2^A \setminus \emptyset) \times A$.
- Framework with Recursive Attack (AFRA) [BCGG11]: $F = (A, R)$ with $R \subseteq A \times 2^{A^{UR}}$.
- Extended Argumentation Framework (EAF) [MP10]: $F = (A, R, D)$ with $R \subseteq A \times A$ and $D \subseteq A \times R$.
Very large and active litterature...

Support Frameworks

- Bipolar Argumentation Framework (BAF) [CLS05]:
 \[F = (A, R, S) \text{ with } R \subseteq A \times A \text{ and } D \subseteq A \times A. \]

- Argumentation Framework with Necessities (AFN) [NR11]:
 \[F = (A, R, N) \text{ with } R \subseteq A \times A \text{ and } D \subseteq (2^A \setminus \emptyset) \times A. \]

- Evidential Argumentation System (EAS) [ON08]:
 \[F = (A, R, E) \text{ with } R \subseteq (2^A \setminus \emptyset) \times A \text{ and } E \subseteq (2^A \setminus \emptyset) \times A. \]

- Abstract Dialectical Framework (ADF) [BES+13]:
 \[F = (A, R, C) \text{ with } R \subseteq A \times A \text{ and } C = \{C_a\}_{a \in A} \text{ a set of acceptance conditions.} \]
Figure 4: Relation of translatibility between Abstract Argumentation Frameworks. The relations cover different type of translation. See [Pol16].
• Weighted Argumentation Framework [DHM^+11]
• Abstract Dialectical Frameworks [BES^+13]
• Evidential-based Argumentation Frameworks [Ore07]
Definition (Weighted Argumentation Framework)

A WAF is a triple $F = (A, R, w)$ where w is a function such that $w : R \rightarrow \mathbb{R}^+$.

Allow the usage of an inconsistency budget to generalize extensions (relax the conflict-free def.).
More expressive than ([DHM$^+$11]):

- Preference-Based Framework (PAF) [AC98]
- Value-Based Argumentation Framework [BC03]
- Extended Argumentation Frameworks [MP10]
Definition (Abstract Dialectical Framework (ADF))

An ADF is a tuple $F = (A, R, C)$ where:

1. A is a set of arguments.
2. $R \subseteq A \times A$.
3. $C = \{C_a\}_{a \in A}$, a set of functions such that $C_a : \mathcal{P}(\text{pred}(x)) \rightarrow \{t, f\}$.

Need another notion for extension: models!
Definition (Interpretation and models)

Given a set of elements A:

- A **three-value interpretation** v is a mapping from $\{\phi_a\}$ to $\{t, f, u\}$. The set of three-value interpretations is denoted K_3.

- A **three-value model** v of A is an interpretation such that $\forall a \in A, v(a) \neq u \implies v(a) = v(\phi_a)$. The set of three-value models over A is denoted K_3^A.

ABSTRACT DIALECTICAL FRAMEWORKS
Information ordering

\[\leq_i \text{ such that } u \leq_i t \text{ and } u \leq_i f \]

\[\{t, f, u\}, \leq_i \) a meet-semilattice with the “consensus” meet \(\sqcap \) such that \(f \sqcap f = f \) and \(t \sqcap t = t \) and \(u \) otherwise.

Information ordering on \(K_3^A \):

\[\forall v_1, v_2 \in K_3^A, v_1 \leq_i v_2 \iff \forall a \in A, v_1(a) \leq_i v_2(a). \]

\((K_3^A, \leq_i) \) a meet-semilattice with the consensus meet \(\sqcap \) such that \(v_1 \sqcap v_2 = v_1(a) \sqcap v_2(a), \forall a \in A. \)

Remark: The least element of \((K_3^A, \sqcap) \) is the mapping that maps to any element of \(A \) the value undecidable.
Definition (Interpretation extension)

\[w \in K^A_2 \text{ extends } v \in K^A_3 \text{ iif } v \leq_i w. \quad [v]_2 \text{ denotes the set of two-value interpretation extending } w. \]

Definition (Grounded Model)

Given an ADF \(F = (A, C) \) and \(v \in K^A_3 \) the grounded extension is the least fixed point of the operator

\[\Gamma_F(v) : a \mapsto \bigcap \{ w(\phi_a) \mid w \in [v]_2 \} \]

The fixed point exists and is generally three-valued [BES+13].
Definition (Acceptability Model)

Given an ADF $F = (A, C)$ and $v \in K_A^3$, then

- v is admissible iff $v \leq_i \Gamma_F(v)$;
- v is complete iff $\Gamma_F(v) = v$;
- v is preferred iff v is \leq_i-maximal admissible.
Combining Abstract Argumentation with Subjective Logic.

Definition (Opinion)

An opinion ω about a proposal ϕ is a triple $\omega(\phi) = (b(\phi), d(\phi), u(\phi))$ where $b(\phi)$ (resp. $d(\phi)$, $u(\phi)$) is the level of belief that ϕ holds (resp. disbelief, uncertainty), such that $b(\phi) + d(\phi) + u(\phi) = 1$ and $b(\phi), d(\phi), u(\phi) \in [0, 1]$.
Definition (Opinion Operators)

- **Negation**: \(\neg \omega(\phi) = (d(\phi), b(\phi), u(\phi)) \).

- **Recommendation**:
 \[\omega(\phi) \otimes \omega(\psi) = (b(\phi)b(\psi), b(\phi)d(\psi), d(\phi) + u(\phi) + b(\phi)u(\psi)) \].

- **Consensus**:
 \[\omega_A(\phi) \oplus \omega_B(\phi) = \left(\frac{b_A(\phi)u_B(\phi) + u_A(\phi)b_B(\phi)}{k}, \frac{d_A(\phi)u_B(\phi) + u_A(\phi)d_B(\phi)}{k}, \frac{u_A(\phi)u_B(\phi)}{k} \right) \] with
 \[k = u_A(\phi) + u_B(\phi) - u_A(\phi)u_B(\phi) \]
- Quantitative Argumentation Debate (QuAD) [BRT+15]
- Discontinuity-Free QuAD (DF-QuAD) [RTAB16]
- Social Abstract Argumentation [LM11]
- Compensation-based semantics [ABDV16]
• Probabilistic Jury-based Dispute Resolution [DT10]
• Abstract Argumentation for Case-Based Reasoning [vST16, ASL^+15, OnP08]
Definition (Case, Case Base, New Case)

Given a set of features \mathbb{F}, possibility infinite, and a binary case outcome $O = \{+, -\}$

- a Case is a pair (X, o) with $X \subseteq \mathbb{F}$ and $o \in O$,
- a Case Base is a finite set $\text{CB} \subseteq \mathcal{P}(\mathbb{F}) \times O$ of cases such that for $(X, o_X), (Y, o_Y) \in \text{CB}$ if $X = Y, o_X = o_Y$,
- a New Case is a set $N \subseteq \mathbb{F}$.

Definition (Nearest Cases)

Given a CB and a new case N, a past case $(X, o_X) \in \text{CB}$ is nearest to N if X is maximal for the \subseteq-inclusion.
Definition (AF associated to a Case-Base)

Given a CB, a default outcome d and a new case N, the associated Argumentation Framework $F_{CB} = (A, R)$ is built such that

- $A = CB \cup \{(N, ?)\} \cup \{\emptyset, d\}$,
- for $(X, o_X), (Y, o_Y) \in CB \cup \{\emptyset, d\}$ it holds that $((X, o_X), (Y, o_Y)) \in R$ iif:
 1. $o_X \neq o_Y$ (different outcome)
 2. $Y \nsubseteq X$ (specificity)
 3. $\exists (Z, o_X) \in CB$ with $Y \nsubseteq Z \nsubseteq X$ (concision)
- for $(Y, o_Y) \in CB$, $((N, ?), (Y, o_Y)) \in R$ holds iif $y \nsubseteq N$
Definition (AA outcome)

The AA outcome of a new case N is $d \times 1_{((\emptyset, d) \in \text{ground}(F_{CB}))} + \bar{d}(1 - 1_{((\emptyset, d) \in \text{ground}(F_{CB}))})$

Another approach by learning rules: [ASL+15]

Example

From $C_1 = (\{\}, -)$ (default case) and $C_2 = (\{F_1\}, -) \implies F_1$ is not relevant to the judges.

Third case $C_3 = (\{F_1, F_2\}, +)$, as it is reversed between C_2 and C_3, the conjunction of F_1 and F_2 is important. If we had a case $C_4 = (\{F_2\}, +)$, we can deduce that F_1 is irrelevant and the conjunction is not important, F_2 is enough.
Multi-agent approach [OnP08]:

<table>
<thead>
<tr>
<th>Definition (Multi-agent Case Base Reasoning Systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Multi-agent Case Base Reasoning Systems is a tuple $M = ((A_1, C_1), ..., (A_n, C_n))$ where A_i is an agent with a case base $C_i = {c_i, ..., c_{m_i}}$. A previously, a case c is a tuple (X, o_x) with $X \subseteq \mathbb{F}$ and $o_x \in S = {S_1, ..., S_k}$ the outcome among k classes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (Justified Prediction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Justified Prediction is a tuple $J = (A, N, s, D)$ where agent A considers the correct class for a new case case N because of the $N \subseteq D$, i.e D is more general than N.</td>
</tr>
</tbody>
</table>
Legal Analysis

Abstract Argumentation

Sequential Decision Processes
 Markov Decision Process Models
 Decentralized Control
 Non-Stationary Environments

Perspectives
Definition (Markov Decision Process (intrinsic form))

A Markov Decision Process (MDP) is a tuple \((S, A, T, p, r)\) where

- \(S\) is the (finite and discrete) state space,
- \(A\) is the (finite and discrete) set of actions,
- \(T\) defining the space of time with \(0, \ldots, T\),
- \(p\) a probability measure over \(S\) given \(S \times A\), i.e. \(p(s, a, s') = \mathbb{P}(s \mid a, s')\),
- \(r\) a reward function defined by \(r : S \times A \to \mathbb{R}\)

with \(p\) holding the (weak) Markov property, i.e. \(\forall h_t = (s_0, a_0, \ldots, s_{t-1}, a_{t-1}, s_t),\)
\[\mathbb{P}(s_{t+1} \mid a_t, h_t) = \mathbb{P}(s_{t+1} \mid a_t, s_t) = p(s_{t+1}, a_t, s_t)\]
Control policy: $g_t : S^t \times A^{t-1} \rightarrow A$

Definition (MDP (dynamical form))

A Markov Decision Process (MDP) dynamic model is defined by:

- System dynamic: $X_{t+1} = f_t(X_t, U_t)$,
- Control process: $U_t = g_t(X_{1:t}, U_{1:t-1})$,

and consists in finding $g^* = \arg \min \ R(g)$

with e.g. γ-ponderate criterion: $R(g) = \mathbb{E}^g[\sum_{t=0}^{T} \gamma^t r_t^g]$, $\gamma \in]0, 1[$
Bellman’s property

MDP optimal policies are markovian policies: \(g_t : S \rightarrow A \)

The Bellman equation is given by:

\[
\forall s \in S, \; g^*(s) = \arg\min_{a} \left\{ r(s, a) + \gamma \sum_{s' \in S} p(s, a, s') V_{g^*}^t(s') \right\}
\]

with \(V_{g_t}^t(s) = r_t^g + \gamma \sum_{s' \in S} p(s, g_t(s), s') V_{g_{t+1}}^t(s') \) the value function of a policy.
Definition (Partially Observable Markov Decision Process)

A POMDP is a tuple \((S, A, O, T, p, q, r)\) where

- \(S\) is the (finite and discrete) state space,
- \(A\) is the (finite and discrete) set of actions,
- \(O\) is the (finite and discrete) set of observations,
- \(T\) defining the space of time with \(0, \ldots, T\),
- \(p\) a probability measure over \(S\) given \(S \times A\), i.e.
 \[p(s, a, s') = \mathbb{P}(s | a, s'),\]
- \(q\) a probability measure over \(O\) given \(S \times A\), i.e.
 \[q(o, a, s) = \mathbb{P}(o | a, s),\]
- \(r\) a reward function defined by \(r : S \times A \to \mathbb{R}\)

with \(p\) holding the (weak) Markov property.
Same results.

In practice, there are many ways to solve such a dynamic program: linear programming, value-iteration, policy-iterations. See in particular [SB08, Put94]
• Mixed Observability MDP
• Possibislist MDP
• Algebraic MDP

Less literature, less optimality results, but seems promising to be coupled with Abstract Argumentation and non-monotonic reasoning.
Much harder than centralized [Rad62, ?]:

- POMDP formalism
- n controllers instead of 1
- Very simple counter example: [Wit73]
- No general optimality results until 2013 [NMT10, NMT13, MNT08]
Some characteristics:

- Uncertainty (environment and controller)
- Information asymmetry
- Signaling
- Information growth

Many studies for particular information type:

- delayed sharing information structure [Wit71],
- delayed state sharing [NMT10, ADM87],
- partially nested systems [HC72],
- periodic sharing information structure [OVLW97],
- belief sharing information structure [Yuk09],
- finite state memory controllers [ABZ12],
- broadcast information structure [WL10]
Formalism:

- n controllers
- $\{X_t\}_{t=0}^{\infty}$, $X_t \in \mathcal{X}$ state process
- $\forall i, \ i \in \{1, \ldots, n\}$, $\{Y^i_t\}_{t=0}^{\infty}$, $Y^i_t \in \mathcal{Y}^i$ observation process
- $\{U^i_t\}_{t=0}^{\infty}$, $U^i_t \in \mathcal{U}^i$ control process
- $\{R_t\}_{t=0}^{\infty}$ reward process

- X is a controlled Markov process
- R_t depends on X_t, X_{t+1}, U_t
- Y_t depends on X_t, U_{t-1}
DECENTRALIZED CONTROL

Dynamical System

Controller

Figure 5: Dynamical Model
Information structure

\[\{Y_t^i, U_t^i\} \subseteq I_t^i \subseteq \{Y_t, U_t\} \]

matrix of controllers information: \((I_t^i)_{1 \leq i \leq n; t \geq 0}\)

Control strategy

\[g_t^i : I_t^i \rightarrow U_t^i \]

Decentralized Control problem:

\[g^* = \arg \max_g E^g \left[\sum_{t=0}^{\infty} \beta^t R_t \right] \quad (1) \]

with \(\beta \in [0, 1] \).
Centralized is a special case of decentralized problems:

- if $n = 1 \implies \text{POMDP}$
- if $1 + Y = X \implies \text{MDP}$

How to solve the general case?

- Person-by-person approach
- Common information approach
Common information approach

\[C_t = \bigcap_{\tau \leq t} \bigcap_{i=1}^{p} l^i_{\tau} \]

- local information: \(L^i_t = l^i_t \setminus C_t \)
- \(U^i_t = C_t \cup L^i_t, \forall i \in [1, n] \)
- \(C_t \subseteq C_{t+1} \)

“Local” policy \(\gamma^i_t = L^i_t \mapsto U^i_t \) (prescription).
Definition (Partial History Sharing)

An informations structure is a partial history sharing structure iif:

- For any set of realization A of L_{t+1}^i and any realization $c_t, l_t^i, u_t^i, y_{t+1}^i$ of, respectively, $C_t, L_t^i, U_t^i, U_{t+1}^i$ and Y_{t+1}^i:

\[
\mathbb{P}(L_{t+1}^i \in A \mid C_t = c_t, L_t^i = l_t^i, U_t^i = u_t^i, Y_{t+1}^i = y_{t+1}^i) = \mathbb{P}(L_{t+1}^i \in A \mid L_t^i = l_t^i, U_t^i = u_t^i, Y_{t+1}^i = y_{t+1}^i)
\]

- The space of realization of L_t^i, denoted \mathcal{L}_t^i, is uniformly bounded:

\[
\exists k \in \mathbb{N}, \forall i \in [1, n], |\mathcal{L}_t^i| \leq k
\]

(2)
Resolutions steps:

• Construct an equivalent *coordinated* system:
 • At time t it choses prescriptions: $\Gamma_t = \{\Gamma^i_t\}_{1 \leq i \leq n}$ such that
 $U^i_t = \Gamma^i_t(L^i_t)$
 • Coordination law: $\Phi_t : C_t \rightarrow (\Gamma^i_t)_{1 \leq i \leq n}$
 • Control strategy: $g^i_t = \{g^i_t\}_{t > 0}, \forall i \in [0, n]$ with
 $g^i_t(c_t, l^i) = \Phi^i_t(c_t)(l^i)$
 as $R(\Phi) = R(g)$, finding $g^* \Leftrightarrow \Phi^*$

• Identify an information state.
Resolutions steps:

- Construct an equivalent *coordinated* system.
- Identify an information state: enough to look for

\[\Phi_t : Z_t \mapsto (\Gamma^i_t)_{0 \leq i \leq n} \text{ with } \{Z_t\}_{t=0}^{\infty} \text{ an information state.} \]

\[\Phi^*(z) = \arg \sup_{\gamma} Q(z, \gamma), \quad \forall z \in \mathcal{Z} \quad (3) \]

where \(Q \) is the unique fixe-point to the following system:

\[Q(z, \gamma) = \mathbb{E}[R_t + \beta V(Z_{t+1})|Z_t = z, \Gamma^1_t = \gamma^1_t, ..., \Gamma^n_t = \gamma^n_t], \quad \forall z \in \mathcal{Z}, \quad \forall \gamma \]

\[V(z) = \sup_{\gamma} Q(z, \gamma), \quad \forall z \in \mathcal{Z} \]
Limitation of POMDP formalism: stationarity of X, x, R, etc.

\implies not suitable for Justice (jurisprudence, disruption, etc.)

Definition (Hidden-Mode Markov Decision Process [CYZ99])

A HM-MDP is a tuple (M, C) where

- $M = \{m_1, ..., m_N\}$ a set of modes with $m_i = (S, A_i, p_i, r_i)$ is a MDP,
- C is a probably measure over M.

A mode = stationary environment.
A (HS3MDP) is a tuple (M, C, H) where

- (M, C) is an HM-MPD,
- H is a probably measure over \mathbb{N} given two modes, i.e. $H(m, m', n)$ is the probability to stay n timesteps into m' coming from m.

Mode transition, given an initial mode m and mode duration k:

1. Stay k timesteps in m.
2. Draw a new m according to C. Draw a new k according to H.
3. Repeat from 1.
NON-STATIONARY ENVIRONMENTS

- $N = 1$, HM-MDP \Leftrightarrow MDP
- $N > 1$, HM-MDP \Leftrightarrow POMDP
- $\forall N$, HM-MDP \Leftrightarrow HS3MDP

Several questions:
- How to learn the environment?
- How to detect the mode changes?
Reinforcement Learning with Context Detection algorithm

<table>
<thead>
<tr>
<th>Change Point Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sequential Analysis: assume known processes</td>
</tr>
<tr>
<td>• Time-serie Clustering: assume known number of processes [KRMP16, KR13, KR12]</td>
</tr>
</tbody>
</table>
Sequential Analysis: CUSUM [BN93]

X generated by μ_1 then μ_2. At time t, $(x_0, x_1, \ldots, x_t, x_t)$

"H_0: the distribution is μ_1"

$$S_t = \max(0, S_{t-1} + \ln\left(\frac{\mu_2(x_t)}{\mu_1(x_t)}\right))$$

with $S_0 = 0$.

$S_t > \delta$, reject H_0

$c = \ln \frac{1-\beta}{\alpha}$ [Wal45].
Argumentation problems with Probabilistic Strategies
[HBM+15, Hun14]
The main conclusion is: “information is what matters the most”

- In economic models \implies (omniscient hypothesis \iff solving by construction the problems) [VH37, Hay45]
- In Abstract Argumentation \implies create the concrete arguments, changes in strategies, CBR.
- In Control theory \implies different optimality results.
- In Justice system \implies influence of amicus, judges ideology.
Legal Analysis

Abstract Argumentation

Sequential Decision Processes

Perspectives
 Room of improvement
 Simulation Based Reasoning (SBR)
- forecast justified by legal terms rather than binary outcome
- explanation generation
- automatic NLP data gathering and processing

Daniel Martin Katz, Michael James Bommarito, and Blackman Josh, *“predicting the behavior of the supreme court of the united states: A general approach”*.

Kevin M. Quinn, Jong Hee Park, and Andrew D. Martin, *Improving judicial ideal point estimates with a more realistic model of opinion content*, 2006.

