GBEx – towards Graph-Based Explanations

Paweł Mróż, Alexandre Quemy, Mateusz Ślażyński, Krzysztof Kluza, Paweł Jemioło

IBM Krakow Software Lab, Cracow, Poland
Faculty of Computing, Poznań University of Technology, Poznań, Poland
AGH University of Science and Technology, Krakow, Poland

32th International Conference on Tools with Artificial Intelligence
Outline

1. Introduction
2. Implementation and Experiments
3. Conclusions and Future Work
Black-box models

Input → Black-Box Machine Learning Model → Output
Why do we need explanations?

Source: "Why Should I Trust You?": Explaining the Predictions of Any Classifier.
Trade-off between explainability and accuracy

Source: Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study.
State-of-the-art methods
Implementation and experiments
Main equation

\[\hat{y} = W^1 \mu^1 + W^2 \mu^2 + \beta \] \hspace{1cm} (1)

where:

- \(\hat{y} \) – the vector to approximate or explain.
- \(W^1 \) – the input matrix of arguments.
- \(\mu^1 \) – the vector of nodes importance.
- \(W^2 \) – the input matrix of connections.
- \(\mu^2 \) – the vector of edge importance
- \(\beta \) – the base value.
Solving the equation

- Splitting equation in two parts
- Using heuristic methods
- Combine it into one big equation to solve

\[W^0 = [W^1 \ W^2] \] \hspace{1cm} (2)

\[\mu^0 = \begin{bmatrix} \mu^1 \\ \mu^2 \end{bmatrix} \] \hspace{1cm} (3)

The Equation 1 could be transformed to the following form:

\[\hat{y} = W^0 \mu^0 + \beta \] \hspace{1cm} (4)
Preparing data and presenting results

Preparing data

- GBEx can handle only categorized data
- To approach real numbers as input we performed clustering

Presenting results

- Single case - bar-chart, heatmap
- Single case - graph
- General explanation - pie-chart, heatmap
- General explanation - graph
Values achieved in experiment

- Date = 24.12.2011
- Ground truth = 1011.
- MLP Regressor = 2026.
- Base value = 3624.
- GBEx = 1939.
- GBEx (without interactions) = 2274.
Single case explanation - bar chart
Single case explanation - heatmap
Single case explanation - graph
General explanation - pie chart
General explanation - heatmap
Feature analysis

(a) 5 clusters.

(b) 10 clusters.

(c) 15 clusters.
Conclusions and Future Work

Future Work

- Work on scalability and efficiency of the algorithm
- Verify explainability on some real life example with users
- Research some methods to obtain optimal number of clusters
The End

Thank you for your attention!
Any questions?

Powered by \LaTeX